
Polyspace® Bug Finder™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Release Notes
© COPYRIGHT 2013–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

R2016a

Files to Review: Generate results for only specified files and
folders . 1-2

Autocompletion for Review Comments: Partially type
previous comment to select complete comment 1-2

Faster MISRA Checking: Check coding rules more quickly
and efficiently . 1-3

S-Function Analysis: Launch analysis of S-Function code
from Simulink . 1-3

Persistent Filter States: Apply filters once and view filtered
results across multiple runs . 1-3

Import signal ranges from model for generated code
analysis . 1-4

Polyspace Metrics Tomcat Upgrade: Use upgraded default
Tomcat server or custom Tomcat version 1-4

Polyspace Metrics Interface Updated: View project and
metrics summary and defect impact 1-5

Source Code Search: Search huge applications more
quickly . 1-5

Default Layouts: Switch easily between project setup and
results review in user interface . 1-5

Files Not Compiled: Receive alerts about compilation errors
in dashboard and reports . 1-6

iv Contents

Project Language Flexibility: Change your project language
at any time . 1-6

Standards Mapped to Defects: Observe coding standards
using Polyspace Bug Finder . 1-6

CERT C mapping . 1-6
CWE ID mapping . 1-7

Improvements in automatic project creation from build
command . 1-7

Polyspace Eclipse plug-in results location moved 1-8

More results available in real time . 1-8

Polyspace TargetLink plug-in supports data from
structures . 1-8

Improvements in checking of previously supported MISRA C
rules . 1-8

MISRA C:2004 Rules . 1-9
MISRA C:2012 Rules . 1-9

Changes in analysis options . 1-10

Improvements to defect checkers . 1-11

R2015aSP1

Bug Fixes

R2015b

Results in Real Time: View results as they are produced . . . 3-2

v

Mixed C/C++ Code: Run analysis on entire project with C and
C++ source files . 3-2

More Defect Categories: Detect security vulnerabilities,
resource management issues, object oriented design
issues . 3-3

Autodetection of Multitasking Primitives: Analyze source
code with multitasking primitives from POSIX and
VxWorks without manual setup . 3-3

Improved Eclipse Support: View results embedded in source
code and context-sensitive help . 3-4

Complete MISRA C:2012 Support: Detect violations of all
MISRA C:2012 rules . 3-5

Defects Classified by Impact: Prioritize defect review by
using the impact attribute assigned to each defect type . . 3-6

Microsoft Visual C++ 2013: Analyze code developed in
Microsoft Visual C++ 2013 . 3-6

GNU 4.9 and Clang 3.5 Support: Analyze code compiled with
GNU 4.9 or Clang 3.5 . 3-7

Improved Review Capability: View result details and add
review comments in one window . 3-7

Saved Layouts: Save your preferred layouts of the Polyspace
user interface . 3-8

Start Page: Get oriented with Polyspace Bug Finder 3-8

Enhanced Review Scope: Filter coding rule violations from
display in one click . 3-8

Improvements to automatic project creation from build
command . 3-9

Improvements in checking of previously supported MISRA C
rules . 3-10

MISRA C:2004 . 3-11

vi Contents

MISRA C:2012 . 3-11
Checking Coding Rules Using Text Files 3-12

Including options multiple times . 3-13

Renaming of labels in Polyspace user interface 3-13

Configuration Associated with Result Not Opened by
Default . 3-14

Improvements in Report Templates 3-14

Updated Support for TargetLink . 3-15

Changes to Bug Finder Defects . 3-15
New Defects . 3-15
Updated Defects . 3-21

Changes in analysis options . 3-21

Binaries removed . 3-25

Support for Visual Studio 2008 to be removed 3-25

Import Visual Studio project removed 3-25

XML and RTF report formats removed 3-25

R2015a

Simplified workflow for project setup and results review
with a unified user interface . 4-2

Code complexity metrics available in user interface 4-3

Context-sensitive help for code complexity metrics, MISRA-
C:2012, and custom coding rules . 4-3

vii

Review of latest results compared to the last run 4-4

Search improvements in the user interface 4-4

Option to specify program termination functions 4-4

Simplified results infrastructure . 4-5

Default statuses to justify results . 4-5

Filters to limit display of results . 4-5

Support for GCC 4.8 . 4-5

Improvements in coding rules checking 4-6

Polyspace plug-in for Simulink improvements 4-7
Integration with Simulink projects . 4-7
Back-to-model available when Simulink is closed 4-8

Changes to Bug Finder defects . 4-8

Polyspace binaries being removed . 4-9

Import Visual Studio project being removed 4-9

R2014b

Support for MISRA C:2012 . 5-2

Parallel compilation for faster analysis 5-2

Additional concurrency issue detection (deadlocks, double
locks, and others) . 5-2

Data race errors . 5-2
Locking errors . 5-3

Support for Mac OS . 5-3

viii Contents

Support for C++11 . 5-4

Context-sensitive help for analysis options and defects 5-4

Code editor in Polyspace interface . 5-5

New and updated defect checkers . 5-5

Ignore files and folders during analysis 5-6

Simulink plug-in support for custom project files 5-6

TargetLink support updated . 5-7

AUTOSAR support added . 5-7

Remote launcher and queue manager renamed 5-7

Improved global menu in user interface 5-8

Improved Project Manager perspective 5-8

Improved Results Manager perspective 5-9

Error mode removed from coding rules checking 5-9

Polyspace binaries being removed . 5-9

Import Visual Studio project being removed 5-10

R2014a

Automatic project setup from build systems 6-2

Classification of bugs according to the Common Weakness
Enumeration (CWE) standard . 6-2

ix

Additional coding rules support (MISRA-C:2004 Rule 18.2,
MISRA-C++ Rule 5-0-11) . 6-3

Support for GNU 4.7 and Microsoft Visual Studio C++ 2012
dialects . 6-3

Simplification of coding rules checking 6-3

Preferences file moved . 6-5

Security level support for batch analysis 6-5

Interactive mode for remote analysis 6-5

Default text editor . 6-6

Results folder appearance in Project Browser 6-6

Results manager improvements . 6-8

Support for Windows 8 and Windows Server 2012 6-9

Function replacement in Simulink plug-in 6-9

Check model configuration automatically before analysis . 6-10

Additional back-to-model support for Simulink plug-in . . . 6-10

Additional analysis checkers . 6-11

Data range specification support . 6-11

Polyspace binaries being removed . 6-11

Improvement of floating point precision 6-11

x Contents

R2013b

Introduction of Polyspace Bug Finder 7-2

Detection of run-time errors, data flow problems, and other
defects in C and C++ code . 7-2

Fast analysis of large code bases . 7-2

Compliance checking for MISRA-C:2004, MISRA-C++:2008,
JSF++, and custom naming conventions 7-3

Cyclomatic complexity and other code metrics 7-3

Eclipse integration . 7-3

Traceability of code analysis results to Simulink models . . . 7-3

Access to Polyspace Code Prover results 7-4

R2016a
Version: 2.1

New Features

Bug Fixes

Compatibility Considerations

R2016a

1-2

Files to Review: Generate results for only specified files and folders

In R2016a, you have greater control over the files on which you want analysis results.
The default project configuration displays results on the set of files that are likely to be
most relevant to you. You can add files or folders to this set based on your requirements.

For instance, by default, coding rule violations and code metrics are generated on header
files that are located in the same folder as the source files. Often, other header files
belong to a third-party library. Though these header files are required for a precise
analysis, you are not interested in reviewing findings in those headers. Therefore, by
default, results are not generated for those headers. If you are interested in certain
headers from third-party libraries, you can add those headers to the subset on which
results are generated.

For more information, see:

• Generate results for sources and (-generate-results-for)
• Do not generate results for (-do-not-generate-results-for)

Compatibility Considerations

In R2016a, by default, results are not generated for headers unless they are in the
same location as source files. Previously, if you ran an analysis at the command line, by
default, results were generated for all headers.

Due to the change in default behavior, if you rerun the analysis on a pre-R2016a project
without explicitly changing the options, you can lose review comments on findings in
some header files. To avoid losing the comments, set the option Generate results for
sources and (-generate-results-for) to all-headers.

Autocompletion for Review Comments: Partially type previous comment
to select complete comment

In R2016a, on the Results Summary or Result Details pane, if you start typing a
review comment that you have previously entered, a drop-down list shows the previous
entry. Select the previous comment from this list instead of retyping the comment.

If you want the autocompletion to be case sensitive, select Tools > Preferences. On the
Miscellaneous tab, select Autocomplete on Results Summary or Details is case
sensitive.

1-3

Faster MISRA Checking: Check coding rules more quickly and efficiently

In R2016a, you can use two predefined subsets to perform a quicker and more efficient
check for coding rule violations. The new subsets turn on rules that have the same scope.

• single-unit-rules — Check rules that apply only to single translation units.
• system-decidable-rules — Check rules in the single-unit-rules subset

and some rules that apply to the collective set of program files. The additional rules
can be checked only at the integration level because the rules involve more than one
translation unit.

Polyspace® finds these subsets of rules in the early phases of the analysis. If your project
is large, before checking all rules, you can check these subsets of rules for a quick
preliminary analysis.

For more information, see “Coding Rule Subsets Checked Early in Analysis”.

S-Function Analysis: Launch analysis of S-Function code from Simulink

With the Polyspace plug-in for Simulink®, you can now start a Polyspace analysis on S-
Functions directly from an S-Function block.

To analyze an S-Function, right-click the S-Function block and select Polyspace >
Verify S-Function. If the S-Function occurs in your model multiple times, you can
choose to analyze every instance of the S-Function by analyzing with the different signal
range inputs, or just a single instance of the S-Function analyzing with the specific signal
ranges for that block.

Persistent Filter States: Apply filters once and view filtered results across
multiple runs

In R2016a, if you apply a set of filters to your analysis results and rerun analysis on the
project, your filters are also applied to the new results. You can specify your filters once
and suppress results that are not relevant for you across multiple runs.

The Results Summary pane shows the number of results filtered from the display. If
you place your cursor on this number, you can see the applied filters.

R2016a

1-4

For instance, in the image, you can see that the following filters have been applied:

• The Defects & Rules filter to suppress code metrics and global variables.
•

The filter to suppress results found in a previous analysis.
• Filters on the Information and Check columns.

For more information, see “Filter and Group Results”.

Import signal ranges from model for generated code analysis

When you run a Polyspace Bug Finder™ analysis from Simulink, you can now include
the signal range information with your analysis. The signal ranges become constraint
specifications (formerly called DRS) for the variables in your analysis. For more
information see, “Configure Data Range Settings” and “Constraints”.

Polyspace Metrics Tomcat Upgrade: Use upgraded default Tomcat server
or custom Tomcat version

Polyspace Metrics now uses Tomcat 8.0.22 to run the Polyspace Metrics web interface.

If you want to use your own version of Tomcat, you can now specify a custom Tomcat
server in the daemon configuration file. To add your custom tomcat web server, add the
following line to the daemon configuration file.

tomcat_install_dir = <path/to/tomcat>

The daemon configuration file is located in:

1-5

• Windows — \%APPDATA%\Polyspace_RLDatas\polyspace.conf
• Linux — /etc/Polyspace/polyspace.conf

Polyspace Metrics Interface Updated: View project and metrics summary
and defect impact

The Polyspace Metrics web interface has been updated to include new features:

• The Bug Finder analysis uploaded to Polyspace Metrics now includes new metrics
summarizing the number of defects with High, Medium, and Low impact. For more
information on the impact classification, see “Classification of Defects by Impact”.

• You can now view project-level metric summaries from the main Polyspace Metrics
page using one of the following methods:

• On the Projects tab, roll your mouse over the list of projects to open a window
displaying a summary of the project and project metrics.

• On the Projects or Runs tab, right-click the column headers to add new columns
to the table. new columns you can add include Coding Rules, Bug-Finder Checks,
Code Metrics, and Review Progress.

For more information, see “View Projects in Polyspace Metrics”.

Source Code Search: Search huge applications more quickly

In R2016a, search results are produced more quickly. If you search for a string in a huge
application, it takes less time for search results to appear.

You can search for a string either by entering the search string in the box on the Search
pane, or by right-clicking a word in your code on the Source pane, and then selecting a
search option.

Default Layouts: Switch easily between project setup and results review in
user interface

In R2016a, you have two default layouts of panes in the Polyspace user interface, one for
project setup and another for results review.

When setting up your projects, select Window > Reset Layout > Project Setup. When
reviewing results, select Window > Reset Layout > Results Review.

R2016a

1-6

For more information, see “Organize Layout of Polyspace User Interface”.

Files Not Compiled: Receive alerts about compilation errors in dashboard
and reports

If some of your source files contain compilation errors, Polyspace Bug Finder analyzes
those files only for code metrics and some coding rules.

In R2016a, if some of your files are analyzed only partially because of compilation errors:

• On the Dashboard pane, you can see that some files failed to compile. Further
information about the compilation errors is available on the Output Summary pane.
For more information, see “Dashboard”.

• If you generate reports by using the BugFinderSummary or BugFinder template, the
chapter Polyspace Bug Finder Summary lists the files that are partially analyzed.
For more information, see Report template (-report-template).

Project Language Flexibility: Change your project language at any time

Projects in the Polyspace interface are no longer fixed to one language.

When you create your projects, you can add any file to the project. After you add files,
select the language (C, C++, or C/C++) for your analysis using the Source code language
(-lang) option. If you add or change the files in your project, you can change the
language to reflect the most suitable analysis type.

Many options that were C only or C++ only are now available for both languages. To see
which analysis options have changed, see “Changes in analysis options” on page 1-10.

Standards Mapped to Defects: Observe coding standards using
Polyspace Bug Finder

CERT C mapping

In R2016a, you can now observe coding standards such as SEI CERT C Coding
Standards by using Polyspace Bug Finder.

For more information, see “Mapping Between CERT C Standards and Defects”.

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard

1-7

CWE ID mapping

In R2016a, the following changes have been made in the mapping between CWE IDs and
Polyspace Bug Finder defects.

Defect CWE ID: Prior to R2016a CWE ID: R2016a

Invalid use of standard
library integer routine

CWE-369: Divide By Zero • CWE-227: Improper
fulfillment of API
contract

• CWE-369: Divide By Zero
• CWE-682: Incorrect

Calculation
• CWE-872: CERT C++

Secure Coding Section 04
- Integers (INT)

For more information, see “Mapping Between CWE Identifiers and Defects”.

Improvements in automatic project creation from build command

In R2016a, automatic project creation from build command is improved.

• If you trace your build command and create a Polyspace project from the command
line, you do not have to specify a product name or project language. You can open the
project in Polyspace Bug Finder or Polyspace Code Prover™. The project language is
determined by using the following rules:

• If all your files are compiled as C, as C++03, or C++11, the corresponding language
is assigned to the project.

Language Options Set in Project

C Source code language: c
C++03 Source code language: cpp
C++11 Source code language: cpp

C++11 Extensions: On
• If some files are compiled as C and the remaining files as C++03 or C++11, the

Source code language option is set to c-cpp.

http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/872.html
http://cwe.mitre.org/data/definitions/872.html
http://cwe.mitre.org/data/definitions/872.html

R2016a

1-8

The option C++11 Extensions is also enabled.

For more information, see Source code language (-lang) and C++11 Extensions (-
cpp11-extensions).

Previously, you specified the product name by using options -bug-finder or -code-
prover. If you did not specify a project language and your source code consisted of
both .c and .cpp files, the language cpp was assigned to the project. The options -
bug-finder and -code-prover have been removed.

For more information, see “Create Project Automatically at Command Line”.
• The support for IAR compilers has improved. All variations of IAR compilers are now

supported for automatic project creation from build command.

Polyspace Eclipse plug-in results location moved

When you analyze projects using the Polyspace plug-in for Eclipse™, your results used
to be stored inside your Eclipse project under eclipse project folder\polyspace.
For new Eclipse projects, Polyspace now stores results in the Polyspace Workspace
under Polyspace_Workspace\EclipseProjects\Eclipse Project Name, where
Polyspace_Workspace is the default project location specified in your Polyspace
Interface preferences. For more information, see “Results Location”.

More results available in real time

When you run a Bug Finder analysis, more results for blocks of code are now available
while the analysis is running. For information about how to open results during the
analysis, see “Open Results”.

Polyspace TargetLink plug-in supports data from structures

The Polyspace plug-in for TargetLink® can now import data from structures in the
constraint specifications (formerly called DRS) for your analysis.

Improvements in checking of previously supported MISRA C rules

In R2016a, the following changes have been made in checking of previously supported
MISRA C® rules.

1-9

MISRA C:2004 Rules

Rule Description Improvement

MISRA C:2004 Rule

10.3

The value of a complex
expression of integer
type may only be
cast to a type that is
narrower and of the
same signedness as
the underlying type of
the expression.

The rule checker no longer raises a
violation of this rule if an expression
with a Boolean result is cast to a type
that is also effectively Boolean.

For instance, in your code, you define
a type myBool using a typedef
and cast the result of (a && b) to
myBool. If you specify to Polyspace
that myBool is effectively Boolean,
the rule checker does not consider
this cast as a violation of rule 10.3.
For more information on how to
specify effectively Boolean types, see
Effective boolean types (-boolean-
types).

MISRA C:2004 Rule

12.2

The value of an
expression shall be the
same under any order
of evaluation that the
standard permits.

The rule checker no longer flags
expressions with the comma operator
that can be evaluated in only one
order.

For instance, the statement ans =
(val++, val++) does not violate
this rule.

MISRA C:2012 Rules

Rule Description Improvement

MISRA C:2012 Rule

13.2

The value of an
expression and its
persistent side effects
shall be the same
under all permitted
evaluation orders.

The rule checker no longer flags
expressions with the comma operator
that can be evaluated in only one
order.

For instance, the statement ans =
(val++, val++) does not violate
this rule.

R2016a

1-10

Changes in analysis options

In R2016a, the following options have been added, changed, or removed.

New Options

Option Description

Generate results for sources and (-
generate-results-for)

Specify files on which you want analysis results.

Do not generate results for (-do-
not-generate-results-for)

Specify files on which you do not want analysis
results.

Updated Options

Option Change More Information

Source code language (-lang) New value c Select your project
language to set
compilation rules
and enable language
specific analysis
options.

Dialect (-dialect) Unified dialects for C, C/C
++, and C++ projects. All
projects can use any dialect
option.

Target processor type (-target) Targets i386 and x86_64
now allow any alignment
value.

Sfr type support (-sfr-types) Allowed for C, C++, C/C++
Respect C90 standard (-no-
language-extensions)

Allowed for mixed C/C++
projects

Pack alignment value (-pack-
alignment-value)

Allowed for C, C++, C/C++

Import folder (-import-dir) Allowed for C, C++, C/C++
Ignore pragma pack directives (-
ignore-pragma-pack)

Allowed for C, C++, C/C++

1-11

Option Change More Information

Division round down (-div-
round-down)

Allowed for C, C++, C/C++

Removed Options

Option Status Description

Files and folders to ignore (-
includes-to-ignore)

Warning Use the option Do not generate results
for (-do-not-generate-results-
for) to suppress results from headers
and sources in certain files or folders.

-support-FX-option-results Warning Option will be removed in a future
release.

Compatibility Considerations

If you use scripts that contain the removed or updated options, change your scripts
accordingly.

Improvements to defect checkers

In R2016a, there are improvements in detection of certain defects. For instance, with the
checkers for defects Dead code and Useless if:

• You see the code sequence leading to the defect in a greater number of situations. For
more information, see “Navigate to Root Cause of Defect”.

• You see fewer false positives. For instance, you do not see false Dead code or
Useless if defects associated with the following constructs:

• _setjmp

• Pointer parameter pointing to a global variable
• You do not see defects in templates.

R2015aSP1
Version: 1.3.1

Bug Fixes

R2015b
Version: 2.0

New Features

Bug Fixes

Compatibility Considerations

R2015b

3-2

Results in Real Time: View results as they are produced

Previously, you could not review results until the analysis was complete. For local
analyses in R2015b, you can start reviewing results as soon as they are available.

When you run a local analysis, a new button appears on the toolbar.

When results are available, this button becomes active.

To start reviewing available results, click this button. The button reactivates every time
results are available. To load additional results, click the button again.

When the analysis is complete, to load all your results, click the button.

For more information, see Open Results.

Mixed C/C++ Code: Run analysis on entire project with C and C++ source
files

If your coding project contains C and C++ files, you can now analyze the entire project in
one Polyspace project. Use the new C/C++ setting to compile .c files with C compilation
rules and compile .cpp and other files with C++ compilation rules.

To create a mixed C and C++ project:

• At the command line, use the option -lang C-CPP.
• In the user interface:

1 Select File > New Project.
2 In the Project properties window, select Project Language > C++ as the main

project language. Enter your other project properties as before.
3 When adding source files, add your .c and .cpp files with their include files.
4 In the configuration, on the Target & Compiler pane, set Source code

language > C-CPP. This setting indicates to the compiler to use C compilation

http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/open-results.html

3-3

rules for .c files and C++ compilation rules for .cpp files. For other file
extensions, Polyspace uses C++ compilation rules.

5 Set your other options as required. Some limitations to consider:

• Coding rules — You can select only one C coding rule set and one C++ coding
rule set.

• Bug Finder Defects — You can select C/C++ or C++ defects. The C++ defects
are checked only on .cpp files.

For other changes to analysis options, see “Changes in analysis options” on page 3-21.

More Defect Categories: Detect security vulnerabilities, resource
management issues, object oriented design issues

You can check your code against five new categories of defects:

• Resource management — Defects related to resource handling such as detection of
unclosed file descriptors or use of a closed file descriptor.

• Object oriented — Defects related to C++ object-oriented programming such as
detection of class design issues or issues in the inheritance hierarchy.

• Security — Defects related to security vulnerabilities such as vulnerable standard
functions, use of sensitive data, and pseudo-random number generation.

• Tainted data — Defects related to using variables that someone outside your program
can manipulate and externally controlled resources.

• Good practice — Defects that allow you to observe good coding practices such as
detection of hard-coded memory buffer size or unused function parameters.

For information about the new defects, see “Changes to Bug Finder Defects” on page
3-15.

Autodetection of Multitasking Primitives: Analyze source code with
multitasking primitives from POSIX and VxWorks without manual setup

If you use POSIX® or VxWorks® to perform multitasking, Polyspace can now interpret
your multitasking code more easily.

Functions Polyspace can interpret:

POSIX

R2015b

3-4

• pthread_create

• pthread_mutex_lock

• pthread_mutex_unlock

VxWorks

• taskSpawn

• semTake

• semGive

By default in R2015b, Polyspace detects thread creating and critical sections from
supported multitasking functions.

For more information, see Modeling Multitasking Code.

Improved Eclipse Support: View results embedded in source code and
context-sensitive help

In R2015b, the following improvements have been made to the Polyspace plugin for
Eclipse:

• Polyspace Bug Finder highlights defects in your source code in the following ways:

• For defects, an ! mark appears before the line number on the left. For coding rule
violations, a or mark appears before the line number on the left.

• The operation containing the defect has a wavy red underlining.
• For defects, a icon appears in the overview ruler to the right of the line

containing the defect. For coding rule violations, a icon appears in the overview
ruler to the right of the line containing the rule violation. If you place your cursor
on the icon, a tooltip shows a brief description of the defect or coding rule.

In addition, a icon appears at the top of the overview ruler. If you place your
cursor on the icon, a tooltip states the total number of defects and coding rule
violations in the file.

Using these indicators, you can track defects in your source code more easily. For
more information, see Review and Fix Results.

• When you select a result in the Results Summary - Bug Finder view, the Result
Details view displays additional information about the result. In the Result

http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/modeling-multitasking-code.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/review-and-comment-results_bty8h_s-15.html

3-5

Details view, if you click the button next to the result name, you can see a brief
description and examples of the result. For defects, you can sometimes see the risk
associated with not fixing the defect and the most common fix for the defect.

• You can switch to a Polyspace perspective that shows only the information relevant
to a Polyspace Bug Finder analysis. To open the perspective, select Window > Open
Perspective > Other. In the Open Perspective dialog box, select Polyspace.

Once you switch to the Polyspace perspective, the source code shows the Polyspace
Bug Finder defects only in this perspective.

• You can view results as they are produced instead of waiting till end of the analysis.

• When you begin an analysis, a icon appears next to the button.
• If results are available, the icon turns to . Click the icon to load available

results.
• With your results open, if additional results are available, the icon is still

visible. Click the icon to load all available results.

Complete MISRA C:2012 Support: Detect violations of all MISRA C:2012
rules

In R2015b, Polyspace Bug Finder supports the following MISRA C: 2012 coding rules.

Rule Description

MISRA C:2012 Directive 2.1 All source files shall compile without any compilation
errors.

MISRA C:2012 Directive 4.5 Identifiers in the same name space with overlapping
visibility should be typographically unambiguous.

MISRA C:2012 Directive 4.13 Functions which are designed to provide operations on a
resource should be called in an appropriate sequence.

MISRA C:2012 Rule 2.6 A function should not contain unused label declarations.
MISRA C:2012 Rule 2.7 There should be no unused parameters in functions.
MISRA C:2012 Rule 17.5 The function argument corresponding to a parameter

declared to have an array type shall have an
appropriate number of elements.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive2.1.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive4.5.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive4.13.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule2.6.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule2.7.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule17.5.html

R2015b

3-6

Rule Description

MISRA C:2012 Rule 17.8 A function parameter should not be modified.
MISRA C:2012 Rule 21.12 The exception handling features of <fenv.h> should

not be used.
MISRA C:2012 Rule 22.1 All resources obtained dynamically by means of

Standard Library functions shall be explicitly released.
MISRA C:2012 Rule 22.2 A block of memory shall only be freed if it was allocated

by means of a Standard Library function.
MISRA C:2012 Rule 22.3 The same file shall not be open for read and write

access at the same time on different streams.
MISRA C:2012 Rule 22.4 There shall be no attempt to write to a stream which

has been opened as read-only.
MISRA C:2012 Rule 22.5 A pointer to a FILE object shall not be dereferenced.
MISRA C:2012 Rule 22.6 The value of a pointer to a FILE shall not be used after

the associated stream has been closed.

Defects Classified by Impact: Prioritize defect review by using the impact
attribute assigned to each defect type

You can prioritize your result review using an Impact attribute assigned to the defects.
The attribute is assigned based on the following considerations:

• Criticality, or whether the defect is likely to cause a code failure.
• Certainty, or the rate of false positives.

You can filter results on the Results Summary pane using the Impact attribute. Or,
you can obtain a graphical visualization of the Defect distribution by impact on the
Dashboard pane. For more information, see Classification of Defects by Impact.

Microsoft Visual C++ 2013: Analyze code developed in Microsoft Visual
C++ 2013

You can analyze code developed in the Microsoft® Visual C++® 2013 dialect.

To analyze code compiled with Microsoft Visual C++ 2013, set your dialect to
visual12.0. Once you specify your dialect, Microsoft Visual C++ allows language

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule17.8.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule21.12.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.1.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.2.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.3.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.4.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.5.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule22.6.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/result-grouping-by-impact.html

3-7

extensions specific to Microsoft Visual C++ 2013. For more information, see Dialect (C) or
Dialect (C++).

GNU 4.9 and Clang 3.5 Support: Analyze code compiled with GNU 4.9
or Clang 3.5

Polyspace now supports the GNU 4.9 and Clang 3.5 dialects for C and C++ projects.

To analyze code compiled with one of these dialects, set the Target & Compiler >
Dialect option to gnu4.9 or clang3.5.

For more information, see Dialect (C) or Dialect (C++).

Improved Review Capability: View result details and add review
comments in one window

In R2015b, the Check Details pane is renamed as Result Details. On this pane, you
can now enter review information such as Classification, Status, and comments. For
more information, see Review and Fix Results.

Previously, to enter review information while keeping the Results Summary pane
collapsed, you used the Check Review pane. This pane has been removed.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect-1.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect-1.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/review-and-comment-results_bty8g0k-1_1.html

R2015b

3-8

Saved Layouts: Save your preferred layouts of the Polyspace user
interface

In R2015b, if you reorganize the Polyspace user interface and place the various panes in
more convenient locations, you can save your new layout. If you change your layout, you
can quickly revert to a saved layout.

With this modification, you can create customized layouts suitable for different
requirements. You can switch between saved layouts quickly. For instance:

• You can have separate layouts for project configuration and results review.
• You can have a minimal layout with only the frequently used panes.

For more information, see Organize Layout of Polyspace User Interface.

Start Page: Get oriented with Polyspace Bug Finder

In R2015b, when you open Polyspace Bug Finder for the first time, a Start Page pane
appears. From this pane, you can:

• Open Polyspace recent results and examples.
• Start a new project.
• Get additional help using the Getting Started, What’s New, and Learn More tabs.

If you select the Show on startup box, the pane appears each time you open Polyspace
Bug Finder. Otherwise, if you close the pane once, it does not reopen. To open the pane,
select Window > Show/Hide View > Start Page.

Enhanced Review Scope: Filter coding rule violations from display in one
click

Previously, using custom options on the Show menu, you suppressed only defects and
code metrics (if they fell below a certain threshold). In R2015b, you can suppress a
certain number or percentage of coding rule violations from the display. You use custom
options in the Show menu on the Results Summary pane. You can:

• Suppress violations of coding rules that are not relevant.
• Focus your results review by seeing only a certain number of coding rule violations in

your display.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/organize-layout-of-polyspace-user-interface.html

3-9

• Predefine a percentage of coding rule violations that you intend to review and view
only that percentage in your analysis results.

You define an option on the Show menu only once. The option is available for one-click
use every time that you open your results. For information on how to create an option to
suppress coding rule violations, see Suppress Certain Rules from Display in One Click.

Improvements to automatic project creation from build command

In R2015b, automatic project creation from your build command is improved:

• If you build your source code from the Cygwin™ environment (using either a 32-bit or
64-bit installation), Polyspace can trace your build and to create a Polyspace project or
options file.

• Support for the following compilers has improved:

• Texas Instruments™ C2000 compiler

This compiler is available with Code Composer Studio™.
• Cosmic HC08 C compiler
• MPLAB XC8 C Compiler

• With certain compilers, the speed of tracing your build command has improved.
The software now stores build information in the system temporary folder, thereby
allowing faster access during the build.

If you still encounter a slow build, use the advanced option -cache-path ./
ps_cache when tracing your build. For more information, see Slow Build Process
When Polyspace Traces the Build.

• If the software detects target settings that correspond to a standard processor type, it
assigns that standard target processor type to your project. The target processor type
defines the size of fundamental data types and the endianness of the target machine.
For more information, see Target processor type (C/C++).

Previously, when you created a project from your build command, the
software assigned a custom target processor type. Although you saw
the processor type in the form of an option such as -custom-target
true,8,2,4,-1,4,8,4,8,8,4,8,1,little,unsigned_int,int,unsigned_short,
you could not identify easily how many bits were associated with each fundamental
type. With this enhancement, when the software assigns a processor type, you can

http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/apply-coding-rule-violation-filters_bt4qyd3.html#buxivt8-1
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/slow-build-process-when-tracing-builds.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/slow-build-process-when-tracing-builds.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/target-processor-type.html

R2015b

3-10

identify the number of bits for each type. Click the Edit button for the option Target
processor type.

• Automatic project creation uses a configuration file written for specific compilers. If
your compiler is not supported, you can adapt one of the existing configuration files
for your compiler. The configuration file, written in XML, is now simplified with some
new elements, macros and attributes.

• The preprocess_options_list element supports a new $(OUTPUT_FILE)
macro when the compiler does not allow sending the preprocessed file to the
standard output.

• A new preprocessed_output_file element allows the preprocessed file name
to be adapted from the source file name.

• The semantic_options element supports a new isPrefix attribute. This
attribute provides a shortcut to specify multiple semantic options that begin with
the same prefix.

• The semantic_options element supports a new numArgs attribute. This
attribute provides a shortcut to specify semantic options that take one or more
arguments.

For more information, see Compiler Not Supported for Project Creation from Build
Systems.

• Sometimes, the build command returns a non-zero status even when the command
succeeds. The non-zero status can result from warnings in the build process. However,
Polyspace does not trace the build and create a Polyspace project. You can now use
an option -allow-build-error to create a Polyspace project even if the build
command returns an exit status or error level different from zero. This option helps
you understand the error in the build process.

For more information, see -option value arguments of polyspaceConfigure.

Improvements in checking of previously supported MISRA C rules

In R2015b, the following changes have been made in MISRA C checking:

http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/your-compiler-is-unknown.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/your-compiler-is-unknown.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/polyspaceconfigure.html

3-11

MISRA C:2004

Rule Description Improvement

MISRA C:2004 Rule

2.1

Assembly language
shall be encapsulated
and isolated.

If an assembly language statement
is entirely encapsulated in macros,
Polyspace no longer considers that the
statement violates this rule.

MISRA C:2004 Rule

8.8

An external object
or function shall be
declared in one file
and only one file.

Polyspace considers that variables or
functions declared extern in a non-
header file violate this rule.

MISRA C:2004 Rule

10.1

The value of an
expression of integer
type shall not be
implicitly converted to
a different underlying
type if it is not a
conversion to a wider
integer type of the
same signedness.

Polyspace no longer raises violation
of this rule on operations involving
pointers.

MISRA C:2004 Rule

19.2

Nonstandard
characters should not
occur in header file
names in #include
directives.

If the character \ or \\ occurs
between the < and > in #include
<filename> (or between " and " in
#include "filename"), Polyspace
no longer raises violation of this rule.

Therefore, you can use Windows®

paths to files in place of filename
without triggering a rule violation.

MISRA C:2012

Rule Description Improvement

MISRA C:2012 Directive
4.3

Assembly language
shall be encapsulated
and isolated.

If an assembly language statement
is entirely encapsulated in macros,
Polyspace no longer considers that the
statement violates this rule.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive4.3.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012directive4.3.html

R2015b

3-12

Rule Description Improvement

MISRA C:2012 Rule 1.1 The program shall
contain no violations of
the standard C syntax
and constraints, and
shall not exceed the
implementation's
translation limits.

If a rule violation occurs because your
.c file contains too many macros,
Polyspace places the rule violation at
the beginning of the file instead on
the last macro usage.

Therefore, you can add a comment
before the first line of the .c file
justifying the violation. Previously,
if you placed a justification comment
before the last macro usage and
later added another macro usage,
the comment no longer applied. For
information on adding code comments
to justify results, see Annotate Code
for Rule Violations.

MISRA C:2012 Rule
10.4

Both operands of an
operator in which
the usual arithmetic
conversions are
performed shall have
the same essential
type category.

• If one of the operands is the
constant zero, Polyspace does not
raise a violation of this rule.

• If one of the operands is a signed
constant and the other operand
is unsigned, the rule violation is
not raised if the signed constant
has the same representation as its
unsigned equivalent.

For instance, the statement u8b =
u8a + 3;, where u8a and u8b are
unsigned char variables, does
not violate the rule because the
constants 3 and 3U have the same
representation.

Checking Coding Rules Using Text Files

In R2015b, if your coding rules configuration text file has an incorrect syntax, the
analysis stops with an error message. The error message states the line numbers in the
configuration file that contain the incorrect syntax.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule1.1.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/annotate-code-for-rule-violations.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/annotate-code-for-rule-violations.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule10.4.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/misrac2012rule10.4.html

3-13

For more information on checking for coding rules using text files, see Format of Custom
Coding Rules File.

Including options multiple times

You can specify analysis options multiple times. This new capacity is available only at
the command line or using the command-line names in the Advanced options pane in
the user interface. You can customize pre-made configurations without having to remove
options.

If you specify an option multiple times, only the last setting is used. For example, if your
configuration is:

-lang c

-prog test_bf_cp

-verif-version 1.0

-author username

-sources-list-file sources.txt

-OS-target no-predefined-OS

-target i386

-dialect none

-misra-cpp required-rules

-target powerpc

Polyspace uses the last target setting, powerpc, and ignores the other target specified,
i386.

In the user interface, if you specify c18 as the target on the Target and Compiler pane
and in Advanced options enter -target i386, these two targets count as multiple
analysis option specifications. Polyspace uses the target specified in the Advanced
options dialog box, i386.

Renaming of labels in Polyspace user interface

In the Polyspace user interface, the following labels have been renamed:

• On the Configuration pane, the Coding Rules node is renamed Coding Rules &
Code Metrics.

The new Coding Rules & Code Metrics node now contains the option Calculate
Code Metrics, which previously appeared in the Advanced Settings node.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/contents-of-custom-coding-rules-file_bt4o0el.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/contents-of-custom-coding-rules-file_bt4o0el.html

R2015b

3-14

• On the Results Summary pane, the Category column title is changed to Group.
This change avoids confusion with coding rule categories.

• On the Results Summary and Result Details pane, the field Classification is
changed to Severity. You assign a Severity such as High, Medium and Low to a
defect to indicate how critical you consider the issue.

• The labels associated with specifying constraints have changed as follows:

• On the Configuration pane, the field Variable/function range setup is
changed to Constraint setup.

• When you click Edit beside the Constraint Setup field, a new window opens. The
window name is changed from Polyspace DRS Configuration to Constraint
Specification.

For more information, see Specify Constraints.

Configuration Associated with Result Not Opened by Default

In R2015b, when you open your result, the Configuration pane does not automatically
display a read-only form of the associated configuration.

To view the configuration associated with the result, select the link View configuration
for results on the Dashboard pane. If a corresponding project is open in the Project
Browser, you can also right-click the Results node in the project and select Open
Configuration.

Improvements in Report Templates

In R2015b, the major improvements in report templates include the following:

• The summary chapter in the template BugFinder now contains a breakup of
Polyspace Bug Finder results by file, in addition to the project-wide summary.

• The summary now shows the total number of results along with the number of results
reviewed.

• Instead of filenames, absolute paths to files appear in the reports.
• If you check for coding rules, the appendix about coding rules configuration states all

rules along with the information whether they were enabled or disabled. Previously,
the appendix only stated the enabled rules.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/specify-constraints.html

3-15

• The reports display the impact attribute associated with a defect.

For more information on this attribute, see Classification of Defects by Impact.

For more information on templates, see Report template (C/C++).

Updated Support for TargetLink

The Polyspace plug-in for TargetLink now supports versions 3.5 and 4.0 of the dSPACE®

Data Dictionary and TargetLink Code Generator.

dSPACE and TargetLink version 3.4 is no longer supported.

For more information, see TargetLink Considerations.

Changes to Bug Finder Defects

• “New Defects” on page 3-15
• “Updated Defects” on page 3-21

The following tables list updates and additions to the list of Bug Finder defect checkers.

New Defects

Tainted Data Defects

Name Description

Array access with tainted
index

Array index from unsecure source possibly outside array
bounds

Command executed from
externally controlled path

Path argument from an unsecure source

Execution of externally
controlled command

Command argument from an unsecure source is vulnerable
to OS command injection

Host change using
externally controlled
elements

Changing host id from an unsecure source

Library loaded from
externally controlled path

Library argument from an externally controlled path

http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/result-grouping-by-impact.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/report-template-1.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/targetlink-considerations.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/arrayaccesswithtaintedindex.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/arrayaccesswithtaintedindex.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/commandexecutedfromexternallycontrolledpath.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/commandexecutedfromexternallycontrolledpath.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofexternallycontrolledcommand.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofexternallycontrolledcommand.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/hostchangeusingexternallycontrolledelements.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/hostchangeusingexternallycontrolledelements.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/hostchangeusingexternallycontrolledelements.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/libraryloadedfromexternallycontrolledpath.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/libraryloadedfromexternallycontrolledpath.html

R2015b

3-16

Name Description

Loop bounded with
tainted value

Loop controlled by a value from an unsecure source

Memory allocation with
tainted size

Size argument to memory function is from an unsecure
source

Pointer dereference with
tainted offset

Offset is from an unsecure source and dereference may be
out of bounds

Tainted division operand Division operands from an unsecure source
Tainted modulo operand Remainder operands from an unsecure source
Tainted NULL or non-
null-terminated string

Argument is from an unsecure source and may be NULL or
not NULL-terminated

Tainted sign change
conversion

Value from an unsecure source changes sign

Tainted size of variable
length array

Size of the variable-length array (VLA) is from an unsecure
source and may be zero, negative, or too large

Tainted string format Input format argument is from an unsecure source
Use of externally
controlled environment
variable

Value of environment variable from an unsecure source

Use of tainted pointer Pointer from an unsecure source may be NULL or point to
unknown memory

Good Practice Defects

Name Description

Delete of void pointer delete operates on a void* pointer pointing to an object
Hard coded buffer size Size of memory buffer is a numerical value instead of

symbolic constant
Hard coded loop boundary Loop boundary is a numerical value instead of symbolic

constant
Unused parameter Function prototype has parameters not read or written in

function body
Use of setjmp/longjmp setjmp and longjmp cause deviation from normal control

flow

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loopboundedwithtaintedvalue.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loopboundedwithtaintedvalue.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/memoryallocationwithtaintedsize.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/memoryallocationwithtaintedsize.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/pointerdereferencewithtaintedoffset.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/pointerdereferencewithtaintedoffset.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/tainteddivisionoperand.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedmodulooperand.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintednullornonnullterminatedstring.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintednullornonnullterminatedstring.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedsignchangeconversion.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedsignchangeconversion.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedsizeofvariablelengtharray.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedsizeofvariablelengtharray.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/taintedstringformat.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofexternallycontrolledenvironmentvariable.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofexternallycontrolledenvironmentvariable.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofexternallycontrolledenvironmentvariable.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useoftaintedpointer.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/deleteofvoidpointer.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/hardcodedbuffersize.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/hardcodedloopboundary.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unusedparameter.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofsetjmplongjmp.html

3-17

Programming Defects

Name Description

Bad file access mode or
status

Access mode argument of function in fopen or open group
is invalid

Call to memset with
unintended value

memset or wmemset used with possibly incorrect arguments

Copy of overlapping
memory

Source and destination arguments of a copy function have
overlapping memory

Exception caught by value catch statement accepts an object by value
Exception handler hidden
by previous handler

catch statement is not reached because of an earlier catch
statement for the same exception

Improper array
initialization

Incorrect array initialization when using initializers

Incorrect pointer scaling Implicit scaling in pointer arithmetic might be ignored
Invalid assumptions about
memory organization

Address is computed by adding or subtracting from address
of a variable

Invalid va_list argument Variable argument list used after invalidation with va_end
or not initialized with va_start or va_copy

Modification of internal
buffer returned from
nonreentrant standard
function

Function attempts to modify internal buffer returned from a
nonreentrant standard function

Overlapping assignment Memory overlap between left and right sides of an
assignment

Possible misuse of sizeof Use of sizeof operator can cause unintended results
Possibly unintended
evaluation of expression
because of operator
precedence rules

Operator precedence rules cause unexpected evaluation
order in arithmetic expression

Standard function call
with incorrect arguments

Argument to a standard function does not meet
requirements for use in the function

Use of memset with size
argument zero

Size argument of function in memset family is zero

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/badfileaccessmodeorstatus.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/badfileaccessmodeorstatus.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/calltomemsetwithunintendedvalue.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/calltomemsetwithunintendedvalue.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/copyofoverlappingmemory.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/copyofoverlappingmemory.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/exceptioncaughtbyvalue.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/exceptionhandlerhiddenbyprevioushandler.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/exceptionhandlerhiddenbyprevioushandler.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/improperarrayinitialization.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/improperarrayinitialization.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incorrectpointerscaling.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invalidassumptionsaboutmemoryorganization.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invalidassumptionsaboutmemoryorganization.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invalidva_listargument.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/modificationofinternalbufferreturnedfromnonreentrantstandardfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/modificationofinternalbufferreturnedfromnonreentrantstandardfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/modificationofinternalbufferreturnedfromnonreentrantstandardfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/modificationofinternalbufferreturnedfromnonreentrantstandardfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/overlappingassignment.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/possiblemisuseofsizeof.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/possiblyunintendedevaluationofexpressionbecauseofoperatorprecedencerules.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/possiblyunintendedevaluationofexpressionbecauseofoperatorprecedencerules.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/possiblyunintendedevaluationofexpressionbecauseofoperatorprecedencerules.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/possiblyunintendedevaluationofexpressionbecauseofoperatorprecedencerules.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/standardfunctioncallwithincorrectarguments.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/standardfunctioncallwithincorrectarguments.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofmemsetwithsizeargumentzero.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofmemsetwithsizeargumentzero.html

R2015b

3-18

Name Description

Variable length array with
nonpositive size

Size of variable-length array is zero or negative

Writing to const qualified
object

Object declared with a const qualifier is modified

Resource Management Defects

Name Description

Closing a previously
closed resource

Function closes a previously closed stream

Resource leak File stream not closed before FILE pointer scope ends or
pointer is reassigned

Use of previously closed
resource

Function operates on a previously closed stream

Writing to read-only
resource

File opened earlier as read-only is modified

Security Defects

Name Description

Deterministic random
output from constant seed

Seeding routine uses a constant seed making the output
deterministic

Execution of a binary from
a relative path can be
controlled by an external
actor

Command with relative path is vulnerable to malicious
attack

File access between
time of check and use
(TOCTOU)

File/directory may have changed state due to access race

File manipulation after
chroot() without chdir(“/”)

Path-related vulnerabilities for file manipulated after call to
chroot

Function pointer assigned
with absolute address

Constant expression is used as function address is
vulnerable to code injection

Incorrect order of network
connection operations

Socket is not correctly established due to bad order of
connection steps or missing steps

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/variablelengtharraywithnonpositivesize.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/variablelengtharraywithnonpositivesize.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/writingtoconstqualifiedobject.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/writingtoconstqualifiedobject.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/closingapreviouslyclosedresource.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/closingapreviouslyclosedresource.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/resourceleak.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofpreviouslyclosedresource.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofpreviouslyclosedresource.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/writingtoreadonlyresource.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/writingtoreadonlyresource.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/deterministicrandomoutputfromconstantseed.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofabinaryfromarelativepathcanbecontrolledbyanexternalactor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofabinaryfromarelativepathcanbecontrolledbyanexternalactor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofabinaryfromarelativepathcanbecontrolledbyanexternalactor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/executionofabinaryfromarelativepathcanbecontrolledbyanexternalactor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/fileaccessbetweentimeofcheckandusetoctou.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/fileaccessbetweentimeofcheckandusetoctou.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/fileaccessbetweentimeofcheckandusetoctou.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/filemanipulationafterchrootwithoutchdir.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/filemanipulationafterchrootwithoutchdir.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/functionpointerassignedwithabsoluteaddress.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/functionpointerassignedwithabsoluteaddress.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incorrectorderofnetworkconnectionoperations.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incorrectorderofnetworkconnectionoperations.html

3-19

Name Description

Load of library from
a relative path can be
controlled by an external
actor

Library loaded with relative path is vulnerable to malicious
attacks

Mismatch between data
length and size

Data size argument is not computed from actual data length

Missing case for switch
condition

Default case is missing and may be reached

Predictable random
output from predictable
seed

Seeding routine uses a predictable seed making the output
predictable

Sensitive data printed out Function prints out sensitive data
Sensitive heap memory
not cleared before release

Sensitive data not cleared or released by memory routine

Umask used with chmod-
style arguments

Unsafe argument to umask allows external user too much
control

Uncleared sensitive data
in stack

Variable in stack is not cleared and contains sensitive data

Unsafe standard
encryption function

Function is not reentrant or uses a risky encryption
algorithm

Unsafe standard function Function unsafe for security-related purposes
Use of dangerous
standard function

Dangerous functions cause possible buffer overflow in
destination buffer

Vulnerable path
manipulation

Path argument with /../, /abs/path/, or other unsecure
elements

Vulnerable permission
assignments

Argument gives read/write/search permissions to external
users

Vulnerable pseudo-
random number generator

Using a cryptographically weak pseudo-random number
generator

Use of non-secure
temporary file

Temporary generated file name is unsecure

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loadoflibraryfromarelativepathcanbecontrolledbyanexternalactor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loadoflibraryfromarelativepathcanbecontrolledbyanexternalactor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loadoflibraryfromarelativepathcanbecontrolledbyanexternalactor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/loadoflibraryfromarelativepathcanbecontrolledbyanexternalactor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/mismatchbetweendatalengthandsize.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/mismatchbetweendatalengthandsize.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/missingcaseforswitchcondition.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/missingcaseforswitchcondition.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/predictablerandomoutputfrompredictableseed.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/sensitivedataprintedout.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/sensitiveheapmemorynotclearedbeforerelease.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/sensitiveheapmemorynotclearedbeforerelease.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/umaskusedwithchmodstylearguments.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/umaskusedwithchmodstylearguments.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unclearedsensitivedatainstack.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unclearedsensitivedatainstack.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsafestandardencryptionfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsafestandardencryptionfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsafestandardfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofdangerousstandardfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofdangerousstandardfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepathmanipulation.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepathmanipulation.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepermissionassignments.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepermissionassignments.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepseudorandomnumbergenerator.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/vulnerablepseudorandomnumbergenerator.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofnonsecuretemporaryfile.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofnonsecuretemporaryfile.html

R2015b

3-20

Name Description

Use of obsolete standard
function

Obsolete routines can cause security vulnerabilities and/or
portability issues

Object-Oriented Defects

Name Description

*this not returned in copy
assignment operator

operator= method does not return a pointer to the current
object

Base class assignment
operator not called

Copy assignment operator does not call copy assignment
operators of base subobjects

Base class destructor not
virtual

Class cannot behave polymorphically for deletion of derived
class objects

Copy constructor not
called in initialization list

Copy constructor does not call copy constructors of some
members or base classes

Incompatible types
prevent overriding

Derived class method hides a virtual base class method
instead of overriding it

Missing explicit keyword Constructor missing the explicit specifier
Missing virtual
inheritance

A base class is inherited both virtually and non-virtually in
the same hierarchy

Member not initialized in
constructor

Constructor does not initialize some members of a class

Object slicing Derived class object passed by value to function with base
class parameter

Partial override of
overloaded virtual
functions

Class overrides a fraction of the inherited virtual functions
with a given name

Return of non const
handle to encapsulated
data member

Method returns pointer or reference to internal member of
object

Self assignment not tested
in operator

Copy assignment operator does not test for self-assignment

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofobsoletestandardfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/useofobsoletestandardfunction.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/thisnotreturnedincopyassignmentoperator.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/thisnotreturnedincopyassignmentoperator.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/baseclassassignmentoperatornotcalled.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/baseclassassignmentoperatornotcalled.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/baseclassdestructornotvirtual.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/baseclassdestructornotvirtual.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/copyconstructornotcalledininitializationlist.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/copyconstructornotcalledininitializationlist.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incompatibletypespreventoverriding.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/incompatibletypespreventoverriding.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/missingexplicitkeyword.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/missingvirtualinheritance.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/missingvirtualinheritance.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/membernotinitializedinconstructor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/membernotinitializedinconstructor.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/objectslicing.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/partialoverrideofoverloadedvirtualfunctions.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/partialoverrideofoverloadedvirtualfunctions.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/partialoverrideofoverloadedvirtualfunctions.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/returnofnonconsthandletoencapsulateddatamember.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/returnofnonconsthandletoencapsulateddatamember.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/returnofnonconsthandletoencapsulateddatamember.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/selfassignmentnottestedinoperator.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/selfassignmentnottestedinoperator.html

3-21

Updated Defects

Name Status Additional Information

• Integer conversion overflow
• Integer overflow
• Invalid use of standard library

routine
• Shift operation overflow
• Sign change integer conversion

overflow
• Shift of a negative value
• Unsigned integer conversion

overflow
• Unsigned integer overflow

Updated The defects do not appear on
computations involving constants
only. For instance, the assignment
unsigned int var = -1; does
not show a Sign change integer
conversion overflow defect.

Format string specifiers and
arguments mismatch

RecategorizedMoved from Other to
Programming

Invalid use of standard library
routine

RecategorizedMoved from Other to
Programming

Assertion RecategorizedMoved from Other to Good
practice

Large pass-by-value argument RecategorizedMoved from Other to Good
practice

Line with more than one statement RecategorizedMoved from Other to Good
practice

Changes in analysis options

In R2015b, the following options have been added, changed, or removed.

New Options

Option Status Description

Respect C90 Standard New The analysis does not allow C language
extensions that do not follow the ISO/IEC
9899:1990 standard.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/integerconversionoverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/integeroverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invaliduseofstandardlibraryroutine.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invaliduseofstandardlibraryroutine.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/shiftoperationoverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/signchangeintegerconversionoverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/signchangeintegerconversionoverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/shiftofanegativevalue.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsignedintegerconversionoverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsignedintegerconversionoverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/unsignedintegeroverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/signchangeintegerconversionoverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/signchangeintegerconversionoverflow.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/formatstringspecifiersandargumentsmismatch.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/formatstringspecifiersandargumentsmismatch.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invaliduseofstandardlibraryroutine.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/invaliduseofstandardlibraryroutine.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/assertion.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/largepassbyvalueargument.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/linewithmorethanonestatement.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/respect-c90-standard-c.html

R2015b

3-22

Option Status Description

(-no-language-
extensions)
Dialect visual12.0 New Allows Microsoft Visual C++ 2013 (visual

12) language extensions.
Dialect gnu4.9 New Allows GCC 4.9 language extensions.
Dialect clang3.5 New Allows Clang 3.5 language extensions.
Source code language (C++)

(-lang)

New in the user
interface

The -lang option is now available in
the Polyspace user interface. It is on
the Target & compiler tab and called
Source code language.

Source code language (C++)
> C-CPP

(-lang C-CPP)

New option
setting

For C++ projects, you can choose C-CPP
to analyze a mix of .c and .cpp source
files.

Configure multitasking
manually (C/C++)

New A user interface option only. This option
enables the previous multitasking options

• Entry points
• Critical section details
• Temporally exclusive tasks

Disable automatic
concurrency detection (C/C+
+)

New By default, the new automatic
concurrency detection is enabled. If you
want to turn it off, select this option.

Updated Options

Option Change Description

Calculate Code Metrics (C/C
++)

Moved in user
interface

The option has been moved in the
Configuration panel from the Advanced
Settings pane to the Coding Rules and
Code Metrics pane.

Signed right shift (C/C++)

(-logical-signed-
right-shift)

Now available
in C++ projects

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/source-code-language-c.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/source-code-language-c.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/multitasking-cc.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/multitasking-cc.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/disable-automatic-concurrency-detection.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/disable-automatic-concurrency-detection.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/disable-automatic-concurrency-detection.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/calculate-code-metrics.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/calculate-code-metrics.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/signed-right-shift.html

3-23

Option Change Description

Division round down (C/C+
+)

(-div-round-down)

Now available
in C++ projects

Targets:

• tms320c3x

• sharc21x61

• necv850

• hc08

• hc12

• mpc5xx

• c18

Now available
in C++ projects

Enum type definition (C/C+
+)

(-enum-type-
definition)

Possible values
updated

The possible values for -enum-type-
definition now match for C and C++.
Available values:

• defined-by-standard (default)

• auto-signed-first

• auto-unsigned-first

-support-FX-option-

results

No longer
available in the
user interface

-pointer-is-24bits Available in C+
+ projects

Available only if you use the Target
setting c18.

-asm-begin -asm-end Now available
in C++ projects

Check MISRA C:2004 Now available
in C++ projects

Available only if you select Source code
language > C-CPP.

Check MISRA AC AGC Now available
in C++ projects

Available only if you select Source code
language > C-CPP.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/division-round-down.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/division-round-down.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/target-processor-type.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/enum-type-definition.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/enum-type-definition.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/asmbeginasmend.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-c-rules_brj7vi6-52.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-ac-agc-rules.html

R2015b

3-24

Option Change Description

Check MISRA C:2012
and Use generated code
requirements (C)

Now available
in C++ projects

Available only if you select Source code
language > C-CPP.

Effective boolean types (C) Now available
in C++ projects

Available only if you select Source code
language > C-CPP.

Allowed pragmas (C) Now available
in C++ projects

Available only if you select Source code
language > C-CPP.

Output format (C/C++)

-report-output-format

Possible values
updated

The output format RTF is deprecated
and not available on the Configuration
pane.

Removed Options

Option Status Description

-dialect cfront2 Removed Choose a different dialect.
-dialect cfront3 Removed Choose a different dialect.
-passes-time Removed Polyspace includes this behavior by

default. Remove this option from existing
configurations.

-include-headers-once Removed Polyspace includes this behavior by
default. Remove this option from existing
configurations.

-discard-asm Removed This option is no longer supported.
Remove this option from existing
configurations.

-misra2 AC-AGC-OBL-

subset

Removed Use -misra-ac-agc OBL-rules instead.

Compatibility Considerations

If you use scripts that contain the removed or updated options, change your scripts
accordingly.

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-c2012.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-c-rules_buee9fc-1.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-c-rules_buee9fc-1.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/effective-boolean-types.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/allowed-pragmas.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/output-format-.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/dialect.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/check-misra-ac-agc-rules.html

3-25

Binaries removed

The following binaries have been removed.

Removed binary Use instead

polyspace-rl-manager.exe polyspace-server-settings.exe

polyspace-spooler.exe polyspace-job-monitor.exe

polyspace-ver.exe polyspace-bug-finder-nodesktop -ver

The binaries to use instead are located in matlabroot/polyspace/bin.

Support for Visual Studio 2008 to be removed

The Polyspace Add-In for Visual Studio® 2008 is no longer supported and will be removed
in a future release.

Compatibility Considerations

To analyze your Visual Studio projects, use either:

• The Polyspace Add-in for Visual Studio 2010. See Install Polyspace Add-In for Visual
Studio.

• The polyspace-configure tool to create a project using your build command. See
Create Project Using Visual Studio Information.

Import Visual Studio project removed

The Tools > Import Visual Studio project has been removed.

To import your project information from Visual Studio, use the Create from build
system option during new project creation. For more information, see Create Project
Using Visual Studio Information.

XML and RTF report formats removed

The formats XML and RTF for report generation are not available from R2016a onwards.
If you generated reports using one of these formats, use an alternative format instead.

http://www.mathworks.com/help/releases/R2015b/bugfinder/gs/install-polyspace-add-in-for-visual-studio.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/gs/install-polyspace-add-in-for-visual-studio.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html
http://www.mathworks.com/help/releases/R2015b/bugfinder/ug/configuring-polyspace-project-using-visual-studio-project-information.html

R2015b

3-26

For more information, see Output format (C/C++).

http://www.mathworks.com/help/releases/R2015b/bugfinder/ref/output-format-.html

R2015a
Version: 1.3

New Features

Bug Fixes

Compatibility Considerations

R2015a

4-2

Simplified workflow for project setup and results review with a unified
user interface

In R2015a, the Project and Results Manager perspectives have been unified. You can run
the analysis and review results without switching between two perspectives.

The unification has resulted in the following major changes:

• After an analysis, the result opens automatically.

Previously, after an analysis, you had to double-click the result in the Project
Browser to open your new results.

• You can have any of the panes open in the unified interface.

Previously, you could open the following panes only in one of the two perspectives.

Project Manager Results Manager

• Project Browser: Set up project.
• Configuration: Specify analysis

options for your project.
• Output Summary: Monitor progress

of analysis.
• Run Log: Find information about an

analysis.

• Results Summary: View Polyspace
results.

• Source: View read-only form of
source code color coded with Polyspace
results.

• Check Details: View details of a
particular result.

• Results Properties: Same as Run
Log, but associated with results
instead of a project. This pane has
been removed.

To open the log associated with a
result, with the results open, select
Window > Show/Hide View > Run
Log.

• Settings: Same information as
Configuration, but associated with
results instead of a project. This pane
has been removed.

4-3

Project Manager Results Manager

To open the configuration associated
with a result, with the results open,
select Window > Show/Hide View >
Configuration.

Code complexity metrics available in user interface

In R2015a, code complexity metrics can be viewed in the Polyspace user interface. For
more information, see Code Metrics. Previously, this information was available only in
the Polyspace Metrics web interface.

In the user interface, you can:

• Specify a limit for the value of a metric. If the metric value for your source exceeds
this limit, the metric appears red in Results Summary.

• Comment and justify the value of a metric. If a metric value exceeds specified limits
and appears red, you can add a comment with the rationale.

Using Polyspace results in this way, you can enforce coding standards across your
organization. For more information, see Review Code Metrics.

Reducing the complexity of your code improves code readability, reduces the possibility of
coding errors, and allows more precise Polyspace analysis.

Context-sensitive help for code complexity metrics, MISRA-C:2012, and
custom coding rules

In R2015a, context-sensitive help is available in the user interface for code metrics
results, MISRA C:2012 rule violations, and custom coding rule violations.

To access the contextual help, see Getting Help.

For information about these results, see:

• Code Metrics
• MISRA C:2012 Directives and Rules

http://www.mathworks.com/help/releases/R2015a/bugfinder/metrics-reference.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/review-code-metrics.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/gs/getting-help.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/metrics-reference.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/misra-c-2012-reference.html

R2015a

4-4

• Custom Coding Rules

Review of latest results compared to the last run

In R2015a, you can review only new results compared to the previous run.

If you rerun your analysis, the new results are displayed with an asterisk (*) against
them on the Results Summary pane. To display only these results, select the New
results box.

If you make changes in your source code, you can use this feature to see only the results
introduced due to those changes. You can avoid reviewing the results in your existing
source code.

Search improvements in the user interface

In R2015a, the Search pane allows you to search for a string in various panes of the user
interface.

To search for a string in the new user interface:

1 If the Search pane is not visible, open it. Select Window > Show/Hide View >
Search.

2 Enter your string in the search box.
3 From the drop-down list beside the box, select names of panes you want to search.

The Search pane consolidates the previously available search options.

Option to specify program termination functions

In R2015a, you can specify functions that behave like the exit function and terminate
your program.

• At the command line, use the flag -termination-functions.
• In the user interface, on the Configuration pane, select Advanced Settings. Enter

-termination-functions in the Other field.

For more information, see -termination-functions.

http://www.mathworks.com/help/releases/R2015a/bugfinder/custom-coding-rules.html
http://www.cplusplus.com/reference/cstdlib/exit/
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/terminationfunctions.html

4-5

Simplified results infrastructure

Polyspace results folders are reorganized and simplified. Files have been removed,
combined, renamed, or moved. The infrastructure changes do not change the analysis
results that you see in the Polyspace environment.

Some important changes and file locations:

• The main results file is now encrypted and renamed ps_results.psbf. You can
view results only in the Polyspace environment.

• The log file, Polyspace_R2015a_project_date-time.log has not changed.

For more information, see Results Folder Contents.

Default statuses to justify results

Polyspace Bug Finder results use certain statuses to calculate the number of justified
results in Polyspace Metrics.

In R2015a, the default statuses that mark results as justified are:

• Justified — Previously called Justify, renamed in R2015a.
• No action planned — Existing status added to justified list in R2015a.

You can change which statuses mark results as justified from the Polyspace preferences.
For more information, see Define Custom Review Status.

Filters to limit display of results

In R2015a, you can use the Show menu on the Results Summary pane to suppress
certain Polyspace Bug Finder results from display.

• To suppress code complexity metrics from display, select Show > Defects & Rules.
• Create your own options on the Show menu. Select Tools > Preferences and create

new options through the Review Scope tab.

For more information, see Limit Display of Defects.

Support for GCC 4.8

Polyspace now supports the GCC 4.8 dialect for C and C++ projects.

http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/files-in-the-results-folder.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/define-custom-review-status.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/suppress-defects-from-display.html

R2015a

4-6

To allow GCC 4.8 extensions in your Polyspace Bug Finder analysis, set the Target &
Compiler > Dialect option to gnu4.8.

For more information, see Dialect (C) and Dialect (C++).

Improvements in coding rules checking

MISRA C:2004 and MISRA AC AGC

Rule Number Effect More Information

Rule 12.6 More results on noncompliant
#if preprocessor directives.
Fewer results for variables cast
to effective Boolean types.

MISRA C:2004 Rules — Chapter
12: Expressions

Rule 12.12 Fewer results when converting to
an array of float

MISRA C:2004 Rules — Chapter
12: Expressions

MISRA C:2012

Rule Number Effect More Information

Rules 10.3 Fewer results on enumeration
constants when the type of the
constant is a named enumeration
type.
Fewer results on user-defined
effective Boolean types.

MISRA C:2012 Rule 10.3

Rule 10.4 Fewer results on enumeration
constants when the type of the
constant is a named enumeration
type.
Fewer results for casts to user-
defined effective Boolean types.

MISRA C:2012 Rule 10.4

Rule 10.5 Fewer results on enumeration
constants when the type of the
constant is a named enumeration
type.
Fewer results on user-defined
effective Boolean types.

MISRA C:2012 Rule 10.5

http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/dialect.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/dialect-1.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules.html#brjxmkc-1
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules.html#brjxmkc-1
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules.html#brjxmkc-1
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules.html#brjxmkc-1
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule10.3.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule10.4.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule10.5.html

4-7

Rule Number Effect More Information

Rule 12.1 More results on expressions
with sizeof operator and on
expressions with ? operators.
Fewer results on operators of
the same precedence and in
preprocessing directives.

MISRA C:2012 Rule 12.1

Rule 14.3 No results for non-controlling
expressions.

MISRA C:2012 Rule 14.3

MISRA C++:2008

Rule Number Effect More Information

Rule 5-0-3 Fewer results on enumeration
constants when the type of the
constant is the enumeration type.

MISRA C++ Rules — Chapter 5

Rule 6-5-1 Fewer results on compliant vector
variable iterators.

MISRA C++ Rules — Chapter 6

Rule 14-8-2 Fewer results for functions
contained in the Files and folders
to ignore (C++) option.

MISRA C++ Rules — Chapter 14

Rule 15-3-2 Fewer results for user-defined
return statements after a try
block.

MISRA C++ Rules — Chapter 15

Polyspace plug-in for Simulink improvements

In R2015a, there are three improvements to the Polyspace Simulink plug-in.

Integration with Simulink projects

You can now save your Polyspace results to a Simulink project. Using this feature, you
can organize and control your Polyspace results alongside your model files and folders.

To save your results to a Simulink project:

1 Open your Simulink project.
2 From your model, select Code > Polyspace > Options.

http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule12.1.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/misrac2012rule14.3.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules-1.html#bse_zo6-7
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules-1.html#bse_zo6-8
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/files-and-folders-to-ignore_bt7e0xw.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/files-and-folders-to-ignore_bt7e0xw.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules-1.html#bse_zo6-15
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/misra-c-coding-rules-1.html#bse_zo6-16

R2015a

4-8

3 In the Polyspace parameter configuration tab, select the Save results to Simulink
project option.

For more information, see Save Results to a Simulink Project.

Back-to-model available when Simulink is closed

In the Polyspace plug-in for Simulink, the back-to-model feature now works even when
your model is closed. When you click a link in your Polyspace results, MATLAB® opens
your model and highlights the related block.

Note: This feature works only with Simulink R2013b and later.

For more information about the back-to-model feature, see Review Generated Code
Results.

Changes to Bug Finder defects

Defect R2015a change

Invalid use of floating point
operation Off by default.

Line with more than one
statement

Off by default.

Invalid use of = (assignment)
operator

On by default for handwritten code (analyses started
at the command-line or Polyspace environment).

Off by default for generated code (analyses started
from the Simulink plug-in).

Invalid use of == (equality)
operator

On by default for handwritten code.

Off by default for generated code.
Missing null in string array On by default for handwritten code.

Off by default for generated code.
Partially accessed array On by default for handwritten code.

Off by default for generated code.

http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/manage-results.html#buqx2wl-1
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/view-results-in-the-polyspace-environment.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/view-results-in-the-polyspace-environment.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseoffloatingpointoperation.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseoffloatingpointoperation.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/linewithmorethanonestatement.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/linewithmorethanonestatement.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseofassignmentoperator.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseofassignmentoperator.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseofequalityoperator.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/invaliduseofequalityoperator.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/missingnullinstringarray.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/partiallyaccessedarray.html

4-9

Defect R2015a change

Variable shadowing On by default for handwritten code.

Off by default for generated code.
Write without further read On by default for handwritten code.

Off by default for generated code.
Wrong type used in sizeof On by default for handwritten code.

Off by default for generated code.

Polyspace binaries being removed

The following binaries will be removed in a future release. The binaries to use are located
in matlabroot/polyspace/bin. You get a warning if you run them.

Binary name Use instead

polyspace-rl-manager.exe polyspace-server-settings.exe

polyspace-spooler.exe polyspace-job-monitor.exe

polyspace-ver.exe polyspace-bug-finder-nodesktop -ver

Import Visual Studio project being removed

The Tools > Import Visual Studio project will be removed in a future release.
Instead, use the Create from build system option during new project creation. For
more information, see Create Project Automatically.

http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/variableshadowing.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/writewithoutfurtherread.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ref/wrongtypeusedinsizeof.html
http://www.mathworks.com/help/releases/R2015a/bugfinder/ug/create-a-configuration-from-your-build-environment.html

R2014b
Version: 1.2

New Features

Bug Fixes

Compatibility Considerations

R2014b

5-2

Support for MISRA C:2012

Polyspace can now check your code against MISRA C:2012 directives and coding rules. To
check for MISRA C:2012 coding rule violations:

1 On the Configuration pane, select Coding Rules.
2 Select Check MISRA C:2012.
3 The MISRA C:2012 guidelines have different categories for handwritten and

automatically generated code.

If you want to use the settings for automatically generated code, also select Use
generated code requirements.

For more information about supported rules, see MISRA C:2012 Coding Directives and
Rules.

Parallel compilation for faster analysis

Starting in R2014b, Polyspace Bug Finder can run the compilation phase of your analysis
in parallel on multiple processors. The software detects available processors and uses
them to compile different source files in parallel.

Previously, the software ran post-compilation phases in parallel but compiled the source
files sequentially. Starting in R2014b, the software can use multiple processors for the
entire analysis process.

To explicitly specify the number of processors, use the command-line option -max-
processes. For more information, see -max-processes.

Additional concurrency issue detection (deadlocks, double locks, and
others)

Data race errors

The following defects deal with unprotected access of shared variables by multiple tasks.

Defect name Status More information

Race conditions Removed Replaced by Data race and Data race including
atomic operations.

http://www.mathworks.com/help/releases/R2014b/bugfinder/ug/misra-c2012-coding-rules.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ug/misra-c2012-coding-rules.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/maxprocesses.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/datarace.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html

5-3

Defect name Status More information

Data race New Checks for unprotected operations on variables
shared by multiple tasks. This check applies to
non-atomic operations only.

Data race including atomic
operations

New Checks for unprotected operations on variables
shared by multiple tasks. This check applies to
all operations, including atomic ones.

Locking errors

The following defects deal with incorrect design of critical sections. For multitasking
analysis, to mark a section of code as a critical section, you must place it between two
function calls. A lock function begins a critical section. An unlock function ends a critical
section.

Defect name Status More information

Deadlock New Checks whether the sequence of calls to lock
functions is such that two tasks block each other.

Missing lock New Checks whether an unlock function has a
corresponding lock function.

Missing unlock New Checks whether a lock function has a
corresponding unlock function.

Double lock New Checks whether a lock function is called twice in
a task without an unlock function being called in
between.

Double unlock New Checks whether an unlock function is called
twice in a task without a lock function being
called in between.

For more information, see:

• Set Up Multitasking Analysis
• Review Concurrency Defects

Support for Mac OS

You can install and run Polyspace on Mac OS X. Polyspace is supported for Mac OS
10.7.4+, 10.8, and 10.9.

http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/datarace.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/deadlock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/missinglock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/missingunlock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/doublelock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/doubleunlock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ug/setup-multitasking-analysis.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ug/review-concurrency-defects.html

R2014b

5-4

You can use Polyspace Metrics on Safari and set up your Mac as a Metrics server.
However, if you restart your Mac machine that is setup as a Metrics server, you must
restart the Polyspace server daemon.

Support for C++11

Polyspace can now fully analyze C++ code that follows the ISO®/IEC 14882:2011
standard, also called C++11.

Use two new analysis options when analyzing C++11 code. On the Target & Compiler
pane, select:

• C++11 extensions to allow the standard C++11 libraries and functions during your
analysis.

• Block char 16/32_t types to not allow char16_t or char32_t types during the
analysis.

For more information, see C++11 Extensions (C++) and Block char16/32_t types (C++).

Context-sensitive help for analysis options and defects

Contextual help is available for analysis options in the Polyspace interface and its plug-
ins. To view the contextual help for analysis options:

1 Hover your cursor over an analysis option in the Configuration pane.
2 Inside the tooltip, select the “More Help” link.

The documentation for that analysis option appears in a dockable window.

Contextual help is available for defects in the Polyspace interface. To view the contextual
help:

1 In the Results Manager perspective, select a defect from the Results Summary.
2

Inside the Check Details pane, select .

The documentation for that Bug Finder defect appears in a dockable window.

For more information, see Getting Help.

http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/c-11-extensions-c.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/block-char1632-t-types-c.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/gs/getting-help.html

5-5

Code editor in Polyspace interface

In R2014b, you can edit your source files inside the Polyspace user interface.

• In the Project Manager perspective, on the Project Browser tree, double-click your
source file.

• In the Results Manager perspective, right-click the Source pane and select Open
Source File.

Your source files appear on a Code Editor tab. On this tab, you can edit your source
files and save them.

New and updated defect checkers

Defect name Status More information

Dead code Updated Checks for non-executed code. No longer
checks for:

• if conditions that are always true without
a corresponding else. This check is covered
by the Useless if defect.

• Code following control-flow statements such
as break, return, or goto defect. This
check is covered by the Unreachable code
defect.

Useless if New Checks for if-conditions that are always true.
Unreachable code New Checks for code following control-flow

statements such as break, return, or goto.
Declaration mismatch Updated Updated for #pragma packing statements.
Race conditions Removed Replaced by Data race and Data race including

atomic operations.
Data race New Checks for unprotected operations on variables

shared by multiple tasks. This check applies to
non-atomic operations only.

Data race including atomic
operations

New Checks for unprotected operations on variables
shared by multiple tasks. This check applies to
all accesses, including atomic ones.

http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/deadcode.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/uselessif.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/unreachablecode.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/uselessif.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/unreachablecode.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/declarationmismatch.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/datarace.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/datarace.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/dataraceincludingatomicoperations.html

R2014b

5-6

Defect name Status More information

Deadlock New Checks whether the sequence of calls to lock
functions is such that two tasks block each
other.

Missing lock New Checks whether an unlock function has a
corresponding lock function.

Missing unlock New Checks whether a lock function has a
corresponding unlock function.

Double lock New Checks whether a lock function is called twice
in a task without an unlock function being
called in between.

Double unlock New Checks whether an unlock function is called
twice in a task without a lock function being
called in between.

Ignore files and folders during analysis

You can now use the analysis option Files and folders to ignore (command line -
includes-to-ignore) to ignore files and folders during defect checking. Previously, the
Files and folders to ignore option (command line -includes-to-ignore) ignored
files and folders during coding rule checking. In R2014b, Polyspace Bug Finder uses this
option to ignore specified files or folders for coding rule checking AND defect analysis.

For more information, see Files and folders to ignore (C) or Files and folders to ignore (C
++).

Simulink plug-in support for custom project files

With the Polyspace plug-in for Simulink, you can now use a project file to specify the
analysis options.

On the Polyspace pane of the Configuration Parameters window, with the Use custom
project file option you can enter a path or browse for a .psprj project file.

For more information, see Configure Polyspace Analysis Options.

http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/deadlock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/missinglock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/missingunlock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/doublelock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/doubleunlock.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/files-and-folders-to-ignore_bt2qz__.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/files-and-folders-to-ignore_bt7e0xw.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/files-and-folders-to-ignore_bt7e0xw.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ug/configuring-polyspace-project.html

5-7

TargetLink support updated

The Polyspace plug-in for Simulink now supports TargetLink 3.4 and 3.5. Older versions
of TargetLink are no longer supported.

For more information, see TargetLink Considerations.

AUTOSAR support added

In R2013b, the Polyspace plug-in for Simulink added support for AUTOSAR generated
code with Embedded Coder®. If you use autosar.tlc as your System target file for
code generation, Polyspace can analyze this generated code. Polyspace uses the same
default analysis options and parameters as Embedded Coder.

For more information, see Embedded Coder Considerations.

Remote launcher and queue manager renamed

Polyspace renamed the remote launcher and the queue manager.

Previous name New name More information

polyspace-rl-manager polyspace-server-

settings

Only the binary name has
changed. The interface title,
Metrics and Remote Server
Settings, is unchanged.

polyspace-spooler polyspace-job-monitor

Queue Manager or Spooler Job Monitor
The binary and the interface
titles have changed. Interface
labels have changed in the
Polyspace interface and its plug-
ins.

pslinkfun('queuemanager') pslinkfun('jobmonitor') See pslinkfun

Compatibility Considerations

If you use the old binaries or functions, you receive a warning.

http://www.mathworks.com/help/releases/R2014b/bugfinder/ug/targetlink-considerations.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ug/embedded-coder-considerations.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/pslinkfun.html

R2014b

5-8

Improved global menu in user interface

The global menu in the Polyspace user interface has been updated. The following table
lists the current location for the existing global menu options.

Goal Prior to R2014b R2014b

Open the Polyspace Metrics
interface in your web
browser.

File > Open Metrics Web
Interface

Metrics > Open Metrics

Upload results from the
Polyspace user interface to
Polyspace Metrics.

File > Upload in
Polyspace Metrics
repository

Metrics > Upload to
Metrics

Update results stored in
Polyspace Metrics with
your review comments and
justifications.

File > Save in Polyspace
Metrics repository

Metrics > Save comments
to Metrics

Generate a report from
results after analysis.

Run > Run Report > Run
Report

Reporting > Run Report

Open a generated report. Run > Run Report >
Open Report

Reporting > Open Report

Import review comments
from a previous analysis.

Review > Import Tools > Import Comments

Specify code generator for
generated code.

Review > Code
Generator Support

Tools > Code Generator
Support

Specify settings that apply
to every Polyspace project.

Options > Preferences Tools > Preferences

Specify settings for remote
analysis.

Options > Metrics and
Remote Server Settings

Metrics > Metrics and
Remote Server Settings

Improved Project Manager perspective

The following changes have been made in the Project Manager perspective:

• The Progress Monitor tab does not exist anymore. Instead, after you start an
analysis, you can view its progress on the Output Summary tab.

• In the Project Browser, projects appear sorted in alphabetical order instead of order
of creation.

5-9

• On the Configuration pane, the Interactive option has been removed from the
graphical interface. To use the interactive mode, use the -interactive flag at
the command line, or in the Advanced Settings > Other text field. For more
information, see -interactive

Improved Results Manager perspective

The following changes have been made in the Results Manager perspective:

• To group your defects, use the Group by menu on the Results Summary pane.

• To leave your defects ungrouped, instead of List of Checks, select Group by >
None.

• To group defects by category, instead of Checks by Family, select Group by >
Family.

• To group defects by file and function, instead of Checks by File/Function, select
Group by > File.

• On the Source pane:

• If a color appears on a brace enclosing a code block, double-click the brace to
highlight the block. If no color appears, click the brace once to highlight the code
block.

• If a code block is deactivated due to conditional compilation, it appears gray.

Error mode removed from coding rules checking

In R2014b, the Error mode has been removed from coding rules checking. Therefore,
coding rule violations cannot stop an analysis.

Compatibility Considerations

For existing coding rules files, coding rules that use the keyword error are treated in
the same way as that with keyword warning. For more information on warning, see
Format of Custom Coding Rules File.

Polyspace binaries being removed

The following binaries will be removed in a future release. Unless otherwise noted, the
binaries to use are located in matlabroot/polyspace/bin.

http://www.mathworks.com/help/releases/R2014b/bugfinder/ref/interactive.html
http://www.mathworks.com/help/releases/R2014b/bugfinder/ug/contents-of-custom-coding-rules-file_bt4o0el.html

R2014b

5-10

Binary name What
happens

Use instead

polyspace-rl-manager.exe Warning polyspace-server-settings.exe

polyspace-spooler.exe Warning polyspace-job-monitor.exe

polyspace-ver.exe Warning polyspace-bug-finder-nodesktop -ver

setup-remote-launcher.exe Warning matlabroot/toolbox/polyspace /

psdistcomp/bin/setup-polyspace-cluster

Import Visual Studio project being removed

The File > Import Visual Studio project will be removed in a future release. Instead,
use the Create from build system option during New Project creation. For more
information, see Create Projects Automatically from Your Build System.

http://www.mathworks.com/help/releases/R2014b/bugfinder/ug/create-a-configuration-from-your-build-environment.html

R2014a
Version: 1.1

New Features

Bug Fixes

Compatibility Considerations

R2014a

6-2

Automatic project setup from build systems

In R2014a, you can set up a Polyspace project from build automation scripts that you use
to build your software application. The automatic project setup runs your automation
scripts to determine:

• Source files
• Includes
• Target & Compiler options

To set up a project from your build automation scripts:

• At the command line: Use the polyspace-configure command. For more
information, see Create Project from DOS and UNIX Command Line.

• In the user interface: When creating a new project, in the Project – Properties
window, select Create from build command. In the following window, enter:

• The build command that you use.
• The folder from which you run your build command.
• Additional options. For more information, see Create Project in User Interface.

Click . In the Project Browser, you see your new Polyspace project with
the required source files, include folders, and Target & Compiler options.

• On the MATLAB command line: Use the polyspaceConfigure function. For more
information, see Create Project from MATLAB Command Line.

Classification of bugs according to the Common Weakness Enumeration
(CWE) standard

In R2014a, Polyspace Bug Finder associates CWE™ IDs with many defects. For the
covered defects, the IDs are listed in the CWE ID column on the Results Summary
pane. To view the CWE ID column, right-click the Results Summary tab and select the
CWE ID column.

For more information, see Common Weakness Enumeration from Bug Finder Defects.

http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/create-a-configuration-from-your-build-environment.html#bt9_wgg
http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/create-a-configuration-from-your-build-environment.html#bt2wd35
http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/create-a-configuration-from-your-build-environment.html#bt9_wh0
http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/bug-finder-defects.html

6-3

Additional coding rules support (MISRA-C:2004 Rule 18.2, MISRA-C++
Rule 5-0-11)

The Polyspace coding rules checker now supports two additional coding rules: MISRA C
18.2 and MISRA® C++ 5-0-11.

• MISRA C 18.2 is a required rule that checks for assignments to overlapping objects.
• MISRA C++ 5-0-11 is a required rule that checks for the use of the plain char type as

anything other than storage or character values.
• MISRA C++ 5-0-12 is a required rule that checks for the use of the signed and

unsigned char types as anything other than numerical values.

For more information, see MISRA C:2004 Coding Rules or MISRA C++ Coding Rules.

Support for GNU 4.7 and Microsoft Visual Studio C++ 2012 dialects

Polyspace supports two additional dialects: Microsoft Visual Studio C++ 2012 and GNU®

4.7. If your code uses language extensions from these dialects, specify the corresponding
analysis option in your configuration. From the Target & Compiler > Dialect menu,
select:

• gnu4.7 for GNU 4.7
• visual11.0 for Microsoft Visual Studio C++ 2012

For more information, see Dialects for C or Dialects for C++.

Simplification of coding rules checking

In R2014a, the Error mode has been removed from coding rules checking. This mode
applied only to:

• The option Custom for:

• Check MISRA C rules
• Check MISRA AC AGC rules
• Check MISRA C++ rules
• Check JSF C++ rules

• Check custom rules

http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/misra-c-coding-rules.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/misra-c-coding-rules-1.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/ref/dialect.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/ref/dialect-1.html

R2014a

6-4

The following table lists the changes that appear in coding rules checking.

Coding Rules
Feature

R2013b R2014a

New file wizard
for custom
coding rules.

For each coding rule, you can select three
results:

• Error: Analysis stops if the rule is
violated.

The rule violation is displayed on the
Output Summary tab in the Project
Manager perspective.

• Warning: Analysis continues even if
the rule is violated.

The rule violation is displayed on the
Results Summary pane in the Result
Manager perspective.

• Off: Polyspace does not check for
violation of the rule.

For each coding rule, you can select
two results:

• On: Analysis continues even if
the rule is violated.

The rule violation is displayed on
the Results Summary pane in
the Result Manager perspective.

• Off: Polyspace does not check for
violation of the rule.

Format of the
custom coding
rules file.

Each line in the file must have the syntax:

rule off|error|warning #comments

For example:

MISRA configuration - Proj1

10.5 off #don't check 10.5

17.2 error

17.3 warning

Each line in the file must have the
syntax:

rule off|warning #comments

For example:

MISRA configuration - Proj1

10.5 off #don't check 10.5

17.2 warning

17.3 warning

Compatibility Considerations

For existing coding rules files that use the keyword error:

• If you run analysis from the user interface, it will be treated in the same way as the
keyword warning The analysis will not stop even if the rule is violated. The rule
violation will however be reported on the Results Summary pane.

6-5

• If you run analysis from the command line, the analysis will stop if the rule is
violated.

Preferences file moved

In R2014a, the location of the Polyspace preferences file has been changed.

Operating
System

Location before R2014a Location in R2014a

Windows %APPDATA%\Polyspace %APPDATA%\MathWorks\MATLAB\R2014a

\Polyspace

Linux® /home/$USER/.polyspace /home/$USER/.matlab/$RELEASE/Polyspace

For more information, see Storage of Polyspace Preferences.

Security level support for batch analysis

When creating an MDCS server for Polyspace batch analyses, you can now add
additional security levels through the MATLAB Admin Center. Using the Metrics
and Remote Server Settings, the MDCS server is automatically set to security level
zero. If you want additional security for your server, use the Admin Center button. The
additional security levels require authentication by user name, cluster user name and
password, or network user name and password.

For more information, see Set MJS Cluster Security.

Interactive mode for remote analysis

In R2014a, you can select an additional Interactive mode for remote analysis. In
this mode, when you run Polyspace Bug Finder on a cluster, your local computer is
tethered to the cluster through Parallel Computing Toolbox™ and MATLAB Distributed
Computing Server™.

• In the user interface: On the Configuration pane, under Distributed Computing,
select Interactive.

• On the DOS or UNIX® command line, append -interactive to the polyspace-
bug-finder-nodesktop command.

http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/storage-of-polyspace-preferences.html
http://www.mathworks.com/help/releases/R2014a/mdce/set-mjs-cluster-security.html

R2014a

6-6

• On the MATLAB command line, add the argument '-interactive' to the
polyspaceBugFinder function.

For more information, see Interactive.

Default text editor

In R2014a, Polyspace uses a default text editor for opening source files. The editor is:

• WordPad in Windows
• vi in Linux

You can change the text editor on the Editors tab under Options > Preferences. For
more information, see Specify Text Editor.

Results folder appearance in Project Browser

In R2014a, the results folder appears in a simplified form in the Project Browser.
Instead of a folder containing several files, the result appears as a single file.

• Format before R2014a

• Format in R2014a

http://www.mathworks.com/help/releases/R2014a/bugfinder/ref/polyspacebugfinder.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/ref/interactive.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/specify-text-editor.html

6-7

The following table lists the changes in the actions that you can perform on the results
folder.

Action R2013b R2014a

Open results. In the result folder, double-
click result file with extension
.psbf.

Double-click result file.

Open analysis options used for
result.

In the result folder, select
options.

Right-click result file and select
Open Configuration.

Open metrics page for batch
analyses if you had used the
analysis option Distributed
Computing > Add to results
repository.

In the result folder, select
Metrics Web Page.

Double-click result file.

If you had used the option
Distributed Computing >
Add to results repository,
double-clicking the results file
for the first time opens the
metrics web page instead of the
Result Manager perspective.

Open results folder in your file
browser.

Navigate to results folder.

To find results folder location,
select Options > Preferences.
View result folder location
on the Project and Results
Folder tab.

Right-click result file and
select Open Folder with File
Manager.

R2014a

6-8

Results manager improvements

• In R2014a, you can view the extent of a code block on the Source pane by clicking
either its opening or closing brace.

Note: This action does not highlight the code block if the brace itself is already
highlighted. The opening brace can be highlighted, for example, with a Dead code
defect for the code block.

• In R2014a, the Verification Statistics pane in the Project Manager and the Results
Statistics pane in the Results Manager have been renamed Dashboard.

On the Dashboard, you can obtain an overview of the results in a graphical format.
You can see:

• Code covered by analysis.
• Defect distribution. You can choose to view the distribution by:

• File

6-9

• Category or defect name.
• Distribution of coding rule violations. You can choose to view the distribution by:

• File
• Category or rule number.

The Dashboard displays violations of different types of rules such as MISRA C,
JSF® C++, or custom rules on different graphs.

For more information, see Dashboard.
• In R2014a, on the Results Summary pane, you can distinguish between violations of

predefined coding rules such as MISRA C or C++ and custom coding rules.

• The predefined rules are indicated by .
• The custom rules are indicated by .

In addition, when you click the Check column header on the Results Summary
pane, the rules are sorted by rule number instead of alphabetically.

• In R2014a, you can double-click a variable name on the Source pane to highlight
other instances of the variable.

Support for Windows 8 and Windows Server 2012

Polyspace supports installation and analysis on Windows Server® 2012 and Windows 8.

For installation instructions, see Installation, Licensing, and Activation.

Function replacement in Simulink plug-in

The following functions have been replaced in the Simulink plug-in by the function
pslinkfun. These functions will be removed in a future release.

Function What
Happens?

Use This Function Instead

PolyspaceAnnotation Warning pslinkfun('annotations',...)

PolySpaceGetTemplateCFGFile Warning pslinkfun('gettemplate')

http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/overview-of-results-manager.html#bt2i3mk-1
http://www.mathworks.com/help/releases/R2014a/install/index.html

R2014a

6-10

Function What
Happens?

Use This Function Instead

PolySpaceHelp Warning pslinkfun('help')

PolySpaceEnableCOMServer Warning pslinkfun('enablebacktomodel')

PolySpaceSpooler Warning pslinkfun('queuemanager')

PolySpaceViewer Warning pslinkfun('openresults',...)

PolySpaceSetTemplateCFGFile Warning pslinkfun('settemplate',...)

PolySpaceConfigure Warning pslinkfun('advancedoptions')

PolySpaceKillAnalysis Warning pslinkfun('stop')

PolySpaceMetrics Warning pslinkfun('metrics')

For more information, see pslinkfun

Check model configuration automatically before analysis

For the Polyspace Simulink plug-in, the Check configuration feature has been
enhanced to automatically check your model configuration before analysis. In the
Polyspace pane of the Model Configuration options, select:

• On, proceed with warnings to automatically check the configuration before
analysis and continue with analysis when only warnings are found.

• On, stop for warnings to automatically check the configuration before analysis
and stop if warnings are found.

• Off does not check the configuration before an analysis.

If the configuration check finds errors, Polyspace stops the analysis.

For more information about Check configuration, see Check Simulink Model Settings.

Additional back-to-model support for Simulink plug-in

In R2014a, the back-to-model feature is more stable. Additionally, support has been
added for Stateflow® charts in Target Link and Linux operating systems.

For more information, see Identify Errors in Simulink Models.

http://www.mathworks.com/help/releases/R2014a/bugfinder/ref/pslinkfun.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/checking-simulink-model-settings.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/ug/identify-errors-in-simulink-models.html

6-11

Additional analysis checkers

Polyspace Bug Finder can now check for two additional defects in C and C++:

• Wrong allocated object size for cast checks for memory allocations that are not
multiples of the pointer size.

• Line with more than one statement checks for lines that have additional
statements after a semicolon.

For more information, see Wrong allocated object size for cast and Line with more than
one statement.

Data range specification support

Data range specification (DRS) is available with Polyspace Bug Finder. You can add
range information to global variables.

You can also use DRS information with Polyspace Code Prover. Similarly, you can use
DRS information from Code Prover in Bug Finder.

For more information, see Inputs & Stubbing.

Polyspace binaries being removed

The following Polyspace binaries will be removed in a future release:

• polyspace-report-generator.exe

• polyspace-results-repository.exe

• polyspace-spooler.exe

• polyspace-ver.exe

Improvement of floating point precision

In R2013b, Polyspace improved the precision of floating point representation. Previously,
Polyspace represented the floating point values with intervals, as seen in the tooltips.
Now, Polyspace uses a rounding method.

For example, the analysis represents float arr = 0.1; as,

http://www.mathworks.com/help/releases/R2014a/bugfinder/ref/wrongallocatedobjectsizeforcast.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/ref/linewithmorethanonestatement.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/ref/linewithmorethanonestatement.html
http://www.mathworks.com/help/releases/R2014a/bugfinder/inputs-stubbing.html

R2014a

6-12

• Pre-R2013b, arr = [9.9999E^-2,1.0001E-1].
• Now, arr = 0.1.

R2013b
Version: 1.0

New Features

R2013b

7-2

Introduction of Polyspace Bug Finder

Polyspace Bug Finder is a new companion product to Polyspace Code Prover. Polyspace
Bug Finder analyzes C and C++ code to find possible defects and coding rule violations.
Bug Finder can run fast analyses on large code bases with low false-positive results.
Polyspace Bug Finder also calculates code complexity metrics with Polyspace Metrics.

Bug Finder integrates with Simulink, Eclipse, Visual Studio, and Rhapsody® to help you
analyze code from within your development environment.

Detection of run-time errors, data flow problems, and other defects in C
and C++ code

Polyspace Bug Finder uses static analysis to find various defects for C and C++ code
with few false-positive results. The analysis does not require program execution, code
instrumentation, or test cases.

Some categories of defects are:

• Numeric
• Programming
• Static memory
• Dynamic memory
• Data-flow

To see a list of defects you can find, see Polyspace Bug Finder Defects.

Bug Finder analysis runs quickly, so you can fix errors and rerun analysis.

For information about running analyses, see Find Bugs.

Fast analysis of large code bases

Polyspace Bug Finder uses an efficient analysis method which produces results quickly,
even from large code bases. Therefore you can fix errors and rerun the analysis without
having to wait. You can find more issues early on in the development process and
produce better quality code overall.

http://www.mathworks.com/help/releases/R2013b/bugfinder/index.html#bt1buic
http://www.mathworks.com/help/releases/R2013b/bugfinder/run-verification.html

7-3

Compliance checking for MISRA-C:2004, MISRA-C++:2008, JSF++, and
custom naming conventions

Polyspace Bug Finder can also check for compliance with coding rules. There are four
industry-defined rules you can select:

• MISRA C
• MISRA AC-AGC
• MISRA C++
• JSF C++

In addition, you can define rules to check for naming conventions.

You can run the coding rules checker separately, or at the same time as your analysis.

For more information, see Check Coding Rules.

Cyclomatic complexity and other code metrics

Using Polyspace Metrics, Polyspace Bug Finder calculates various code metrics,
including cyclomatic complexity. These statistics are displayed using Polyspace Metrics,
an integrated Web interface. You can use these results to track code quality over time.
You can also share the code metrics, allowing others to track your project’s progress.

Eclipse integration

Polyspace Bug Finder comes with an Eclipse plug-in that integrates Polyspace into your
development environment. You can set up options, run analyses, view results, and fix
bugs in the Eclipse interface. Using the Polyspace plug-in, you can quickly find and fix
bugs as you code.

For a tutorial on using the Polyspace Bug Finder plug-in, see Find Defects from the
Eclipse Plug-In.

Traceability of code analysis results to Simulink models

For generated code from Simulink models, Polyspace analysis results link directly back
to your Simulink model. You can trace defects back to the block that is causing the bug.

http://www.mathworks.com/help/releases/R2013b/bugfinder/check-coding-rules-compliance-1.html
http://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-the-eclipse-plug-in.html
http://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-the-eclipse-plug-in.html

R2013b

7-4

In the Source Code view of the Results Manager, the block names appear as links. When
you select a link, the corresponding block is highlighted in Simulink.

For a tutorial on using Polyspace Bug Finder with Simulink models, see Find Defects
from Simulink.

Access to Polyspace Code Prover results

A Polyspace Bug Finder installation also includes the Polyspace Code Prover user
interface. With only a Polyspace Bug Finder license, you cannot run local Polyspace Code
Prover verifications in the Polyspace Code Prover interface. However, you can use the
Polyspace Code Prover interface to review results and upload comments to Polyspace
Metrics.

For more information, see the Polyspace Code Prover Documentation.

http://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-simulink.html
http://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-simulink.html
http://www.mathworks.com/help/releases/R2013b/codeprover/index.html

